If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-41=18
We move all terms to the left:
4y^2-41-(18)=0
We add all the numbers together, and all the variables
4y^2-59=0
a = 4; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·4·(-59)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{59}}{2*4}=\frac{0-4\sqrt{59}}{8} =-\frac{4\sqrt{59}}{8} =-\frac{\sqrt{59}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{59}}{2*4}=\frac{0+4\sqrt{59}}{8} =\frac{4\sqrt{59}}{8} =\frac{\sqrt{59}}{2} $
| (2x-5)(5x+8)=10x^2-9x-40 | | (y+14)/(18+4)=8 | | (y+10)/9+19=22 | | y/3-13=10 | | .06w=10.56 | | 3*(y+8)/15=33 | | 7n+3n=-2n-6 | | 20+2x=3x+2 | | a^2+30^2=96^2 | | 44^2+3^2=c^2 | | v-6=-12 | | (40+85)/y+2=20 | | c/7=10 | | (66+79)/(y+4)=42 | | 7x-1(3x+1)=4x-(3-x)-19 | | (27+67)/y=47 | | 4.2=10.6-2u | | (5*y)^2-77=59 | | (5*y^2)-77=59 | | Y=5x-7x+10+23 | | p=7/3N+34 | | 5x2=77 | | 7-7a=-7-5a | | 4b+1.8=6b | | -4p-6=-5p-3 | | -2x=8=-x+7 | | 8*y^2-21=39 | | -3r-3=-3 | | (y+11)/(9+9)=4 | | -16/19n=20/38 | | 7z-23=23 | | (y+3)/6+22=20 |